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The cerebellum shapes motions by encoding
motor frequencies with precisionand
cross-individual uniformity
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Understanding brain behaviour encoding or designing neuroprosthetics
requires identifying precise, consistent neural algorithms across individuals.
However, cerebral microstructures and activities are individually variable,
posing challenges for identifying precise codes. Here, despite cerebral
variability, we report that the cerebellum shapes motor kinematics by
encoding dynamic motor frequencies with remarkable numerical precision
and cross-individual uniformity. Using in vivo electrophysiology and
optogenetics in mice, we confirm that deep cerebellar neurons encode
frequencies using populational tuning of neuronal firing probabilities,
creating cerebellar oscillations and motions with matched frequencies.

The mechanismis consistently presented in self-generated rhythmic and
non-rhythmic motions triggered by a vibrational platform or skilled tongue
movements of licking in all tested mice with cross-individual uniformity.

The precision and uniformity allowed us to engineer complex motor
kinematics with designed frequencies. We further validate the frequency-
coding function of the human cerebellum using cerebellar electroen-
cephalography recordings and alternating current stimulation during
voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor
kinematics with precision and uniformity, the mathematical foundation for a
brain-computer interface for motor control.

Our brains control our decisions and behaviours with incredible
precision and reliability, indicating existing neural algorithms for
detailed behavioural control. Identifying such a precise algorithm for
the human species requires precise coupling between neural activity
and behaviours, not only valid in one person but consistent across
individuals. However, cerebral microstructure and activity details are
variable acrossindividuals, even among identical twins'. This variabil-
ity poses major challenges in identifying reliable and precise neural
codes necessary for understanding brain behavioural coding and

designing neuroprosthetics. Recent advances in deep learning have
enabled the decoding of neuronal activity to behavioural outputs
within a single subject®. However, neural network variability prevents
the transfer of a learned decoding model to a new subject without
retraining on their specific neural-behavioural data, whichis unavail-
ablein patients who have lost related functions. Additionally, genera-
tive models have known reliability issues to create new behaviours
beyond their training set, whichis essential for generating awide range
of human behaviours. Identifying explainable and consistent neural
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algorithmsis a crucial scientific challenge and an unmet medical need
for neuroprosthetic design.

Inaddition to the challenges posed by neural network variability
among human brains, the spinal cords of different people and mice
use the same neural mechanisms to control muscle activities with
remarkable spatiotemporal precision. This consistency points to a
specialized brain structure capable of translating high-dimensional
conscious commands into temporally precise neural codes for motor
kinematics. Recent studies suggest that the cerebellum plays a crucial
role in linearly coding the kinematics. The cerebellum regulates the
end-point precision of reach movement**, motor-state changes of
skilled movement®”’, eye saccades®’, tongue'® and harmaline-induced
movements®. The cerebellum is also adept at maintaining tempo-
ral accuracy®, establishing specialized cortical connections® and
forming rapid olivocerebellar circuits™ for handling fast kinematics.
The evidence suggests that our central nervous system may use the
cerebellum as a linear encoder to build complex motor kinematics.
However, individual variability remains an intrinsic feature of these
time domain observations.

Fortunately, insights into human cerebellar disorders have shed
lightontherole of the cerebellumin motor kinematics coding. Cerebel-
lar dysfunctions lead to the breakdown of motor kinematic controlin
a unique feature linked to motor frequencies. Essential tremor, the
most common movement disorder, is characterized by involuntary
rhythmic movements with a consistent motor frequency, linked to
excessive cerebellar oscillations” ™. Conversely, cerebellar ataxia
features arrhythmic involuntary movements that are associated with
Purkinje cell (PC) loss'®". These abnormalities strongly suggest that
cerebellar diseases have neuronal coding dysfunctions in forming
motor frequencies.

Inspired by theories that subthreshold oscillations in the olivo-
cerebellar circuits play a crucial rolein motor control'>"5™ this study
investigates the potential of cerebellar frequency coding in shaping
motor kinematics. We explored the frequency building blocks atboth
cellular and population levels and established that motor frequency
codingis not only biologically robust, but also mathematically precise
and generalizable. This suggests a cerebellar algorithm capable of cre-
ating complex motor kinematics with designed frequency dynamics.

Results

Cerebellar oscillatory frequencies report motor rhythms
Ourinitialinvestigations focused on whether the cerebellum encodes
the motor frequencies of self-generated rhythmic movements in mice.
To encourage the mice into generating motor behaviours at a prede-
termined frequency, we applied a horizontal vibrating platform that
can vibrate at a specific fixed frequency or frequency as a function
of time (Fig. 1a and Supplementary Video 1). Wild-type mice were
trained to develop active motor compensation to the vibrations and
couldwalk and stand freely on the platform (Supplementary Video 2).
Self-generating motion can be calculated by subtracting the prede-
signed sinusoidal platform vibrations from the head-mounted accel-
erometer signals, including both vibration and active motion (Fig. 1b).
Both platform and head signals were detected simultaneously with
accelerometers of the same design. When the mouse was at rest, the
head moved with the platform, leading to similar waveforms of accel-
erometer signals from the head or the platform (Fig. 1b, grey). When
the mouse performed compensatory movement to cancel out the plat-
formvibrations, the head signals were dampened by motor compensa-
tion (Fig.1b, orange, and Supplementary Video 2). The vibrations also
allowed multiple muscles and joints to react at the same rhythm, which
enhanced the frequency information across cerebellar topography.
During 16 Hz platform vibrations, simultaneous local field potential
(LFP) recordings from the cerebellar cortex revealed corresponding
16 Hz cerebellar oscillations (Fig. 1c-f). To rule out LFP artefacts gener-
ated by the vibration platform, we recorded hippocampal LFPs, which

displayed typical theta oscillations but no 16 Hz vibration-related sig-
nals (Supplementary Fig. 1). We also implanted electromyography
(EMG) wires into the quadricep muscles of the hindlimbs to validate
active motor compensation. The EMG recordings confirmed active
muscle contractions at the compensatory frequency in well-trained
mice (Supplementary Fig. 2).

Onthe basis of this initial observation, we trained the mice with a
protocol including multiple vibratory frequencies (Fig. 1g), covering
the physiological frequency range of spontaneous motor behaviours'.
We first performed a cross-correlation analysis between cerebellar
LFPs and mouse motions (Fig. 1h). Compatible with previous knowl-
edge, cerebellar signals are positively correlated with motions but
with notable variation (Fig. 1i-m). However, it is possible that the cer-
ebellum LFPs predominantly reflect the sensory inputs. We therefore
cross-correlated cerebellar LFPs with accelerometer signals, which
reflected overallmotions and therefore corresponding overall sensory
inputs. While the accelerometer signals also had strong frequency
dependency (Fig. 1d), they were poorly correlated with cerebellar
signals (Fig. 1k,m), suggesting a motor-predominant contribution of
the cerebellar LFPs. The dynamics of cross-correlograms are highly
variable across time and across individual mice (Fig. 1i-k), indicating
a qualitative valid and quantitative imprecise scenario. In addition
to the maximal cross-correlation, we further examined the detailed
cross-correlation features across time shifts (Fig. 1n). Distinct periodic
patternsemerged, each corresponding to a specific motor frequency.
The frequency spectrum of the cross-correlation signals displayed a
strong dependence on frequency, suggesting a potential mechanism
for cerebellar frequency coding (Fig. 10).

To explore the possibility of cerebellar frequency coding, we pro-
cessed the LFP and motion signalsin the frequency domain (Fig.2a-d).
The trained mice consistently generated movements at specific motor
frequencies, with correspondingly enhanced cerebellar LFP ampli-
tudes (Fig. 2c). While a general correlation was observed between
motor activity and cerebellar LFP amplitudes on an individual basis,
the increased LFP amplitudes varied across mice, preventing a pre-
cise correlation with motor amplitudes in a cross-individual analysis
(Fig.2e).In contrast, peak cerebellar oscillatory frequencies accurately
encoded motor frequencies, demonstrating minimal individual vari-
ability and underscoring the potential role of the cerebellumin quan-
titative motor-rhythm coding (Fig. 2f).

The extracted frequency in Fig. 2f is the section-based average
of frequency-dependent motions. If the cerebellum truly engages in
the rhythm control of motor kinematics, the frequency coding should
precisely reflect kinematic details. We performed a second-by-second
analysis of all recordings, examining frequencies and amplitudes on a
second-by-second basis (Fig. 2g,h). The cerebellar frequency consist-
ently matched the motor frequency across all mice and throughout
most of the 2,160 data points, highlighting a robust, quantitatively
precise coding mechanism (Fig. 2g-j). By comparing the time and
frequency domains, the imprecision of cerebellar kinematic coding
ismainly contributed by the amplitude mismatches between cerebel-
lar and motion signals (Fig. 2k). Next, we evaluated the interposed
nucleus of the deep cerebellar nuclei (DCN), the output structure of
the motor cerebellum**", The DCN LFPs were significantly but vari-
ably correlated with the motor kinematics in the time domain (Sup-
plementary Fig. 3), whereas LFP frequencies consistently matched
motor frequencies across allexamined mice and all 2,880 data points
(Supplementary Fig. 4).

To determine whether the cerebellum can process multiple fre-
quencies, we applied13 Hz,20 Hz or acombination of 13 Hzand 20 Hz
vibrations to train compensatory motion. The mouse cerebellumreli-
ably generated dual frequencies corresponding to the motor kinemat-
ics (Supplementary Fig. 5).

In summary, the cerebellum accurately encodes motor frequen-
cies duringself-generated rhythmic movements in mice, with minimal
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Fig. 1| Self-generated cerebellar oscillations in compensatory motions. a, An
experimental setting of the vibration platform generating horizontal sinusoidal
motions. b, Representative traces for active compensatory motion, calculated
as signals of a head-mounted accelerometer minus the platformvibrations.

c-f, Representative time-frequency plots of vibrations (c), head-mounted
accelerometer signals (d), compensatory motions (e) and cerebellar oscillations
(f) during 16 Hz vibrations. g, A schematic of the vibration protocol, indicating
the sequence of applied frequencies. xcorr,,,,, maximal cross-correlation.

h, Anillustration of the xcorr,,,, for cerebellar LFPs with compensatory motions
and residual body movements (accelerometer). i, A trial-by-trial profile of the
XCOIT,,,. between cerebellar oscillations and compensatory motion (top) or
accelerometer signals (bottom). j-m, The mean xcorr,,,, values (jand k) and

Pearson correlation with Fisher’s transformation (and m) between cerebellar
oscillations and compensatory motion (jand 1) or accelerometer (kand m)
signals across various vibration frequencies. The statistical analysis in jwas
performed using the Friedman test; Friedman statistic 0f26.93, P= 0.0001 (two
sided). n, A three-dimensional plot of cross-correlation between cerebellar
oscillations and compensatory motion, with the x axis representing the

time lag, the y axis showing the vibration frequency and the zaxis indicating
cross-correlation values. o, A three-dimensional power spectral density (PSD)
plot of the cross-correlation spectrum between cerebellar oscillations and
compensatory motion, with the x axis indicating frequency, the y axis showing
the vibration frequency and the z axis representing spectral power (n = 6 mice).
Data are presented as mean values + s.d. NS, not significant. **P < 0.01.

individual variability. The cerebellar-encoded frequency (f), whether
derived from the DCN or cerebellar LFPs, is equal to the motor fre-
quency:_fcerebellar :fmotor'

Population activity of DCN neurons encodes motor frequencies
LFPs are the spatiotemporal summation of neuronal signals. We need
to understand the building blocks at the single-cell level. To under-
stand these signals at the single-cell level, we simultaneously recorded

single-unit (SU) activities and LFPs from the interposed nuclei of the
DCN and analysed the corresponding motor kinematics in freely mov-
ing mice (Fig.3a,b and Supplementary Figs. 6 and 7). We first evaluated
whether DCN neuronal firing rates can represent motor frequencies.
The motor frequencies were poorly correlated with neuronal firing
rates, burst rates or their mean firing rates (Fig. 3c), against a simple
rate-coding algorithm. We next evaluated whether the changes in fir-
ing probability, instead of the firing rate itself, could have a tuning
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Fig. 2| Correlation of cerebellar oscillations and rhythmic motions in

the frequency domain. a,b, Representative time-frequency plots (a) and
PSDs (b) across various vibrating frequencies. ¢,d, Peak PSD amplitudes of
cerebellar oscillations (Friedman statistic of 18.14, P= 0.0059 (two sided)) (c)
and compensatory motions (Friedman statistic of 36, P <0.0001 (two sided))
(d) across various vibrating frequencies. e, A linear regression analysis of peak
PSD amplitudes between cerebellar oscillations and compensatory motor
movements. The solid red line represents the best-fit linear model, while the
dashed red lines indicate the 95% confidence bounds (36 pointsin 6 mice).

f, Alinear regression analysis of the frequencies at peak PSD amplitudes for

cerebellar oscillations and motor activities (36 points in 6 mice). g,h, A second-
by-second linear regression analysis of the amplitude correlation (g) and
frequency correlation (h) for each mouse (360 points in each mouse). i,j, The
collective second-by-second analysis for all amplitudes (i) and all frequencies
(§) inallmice combined (2,160 pointsin 6 mice). k, Statistical analysis of the
correlation between cerebellar LFPs and motor activity in both the time domain
and frequency domain, using Pearson correlation with Fisher’s transformation
and the determination coefficient (R?) of the linear regression presentedini
andj, respectively (n = 6 mice, one-way ANOVA; F=111.9, P< 0.0001). Dataare
presented as mean values *s.d. *P < 0.05, **P < 0.01and **P < 0.001.
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periodicity to represent motor frequencies. We leveraged vector
strength spectrum analysis****, a mathematical method using fre-
quency vectors to unbiasedly extract probability tuning strength across
frequencies (Fig. 3d). The vector strength frequencies were highly
variable at the single-celllevel (Fig. 3e). However, a specific frequency
emerged with improving prominence when more and more neurons
were included (Fig. 3f). This populationally encoded frequency con-
verged towards the matched DCN oscillatory frequency and motor
frequency with the same numerical value (Fig. 3g,h), with increasing
signal-to-noise ratio (SNR) during the expansion of population size
(Fig. 3i). This population-coding mechanism remained valid acrossall
tested frequencies (Supplementary Fig. 8). Next, we applied autocor-
relationto explore theintrinsic tuning of neuronal firing probabilities
(Fig. 3j—n). Similar to the results of the vector strength analysis, the
autocorrelogram did not generate consistent tuning frequency at the
single-cell level but faithfully reported the motor frequencies at the
populational level (Fig. 3j—n and Supplementary Fig. 9).

Ifthe DCN neurons contribute to the generation of motor frequen-
cies, the neuronal firing times should not be random but periodically
tuned to the phases of the frequency-dependent motor kinematics.
To validate the prediction, we extracted the instantaneous phases of
motor kinematics based onthe neuronalfiring times (Fig. 30) and quan-
tified the phasicbias by polarity index, anumericalindex ranging from
0 (purely random firings) to1(complete phase-locked firings)". While
some units exhibited higher polarity when compared with the shuf-
fled data (Fig. 3p,q), all units have relatively low polarity index (<0.4)
(Fig.3r); therefore, no single neuron can explainthe precise frequency
coding of motor kinematics. Notably, phase biases of neuronal firings
were significantly higher than the random process at the populational
level (Fig. 3r,sand Supplementary Figs.10 and 11). Direct visualization
of simultaneously recorded SUs also supported the prediction of the
abovementioned frequency and phase analysis at the populational
level (Supplementary Fig.12).

Takentogether, the DCN neurons encode the frequencies of motor
kinematics throughout population coding. While each neuron gener-
ates noisy or stochastic signals, the neuronal population achieves a
high SNR and precise frequency coding. This confirms that LFPs, as
spatiotemporal summations of these population activities, accurately
reflected the synchronized frequencies between neuronal codes, LFPs
and motor kinematics.

Rhythmic DCN stimulation induces motor rhythms
To establish the causality of the frequency-coding mechanism in
motor kinematics, we optogenetically stimulated DCN neurons in

Thyl:ChR2-EYFP mice and recorded the resultant motor kinematics
using a pressure-sensing force plate™'* (Fig. 4a). Rhythmic stimulation
ledtoaperiodicincreaseinneuronal firings (Fig. 4b). Consistently, the
SU-firing rates were way above the motor frequencies (Fig. 4c), against
therate-codingalgorithm. Instead, the rhythmic optogenetic stimula-
tion generated motor rhythm at the stimulating frequencies, and the
populational tuning frequencies precisely converged to the motor
frequencies at all tested scenarios (Fig. 4d-h). Phase analysis further
verified the consistent feature of population coding at all stimulating
frequencies (Supplementary Fig.13).

We also evaluated cerebellar LFPs simultaneously recorded with
the motor kinematics (Fig. 4i,j). The optogenetic stimulation led to
increased but varied amplitudes of cerebellar oscillatory strengths
and motor rhythms (Fig. 4k,I). In contrast, cerebellar and motor fre-
quencies were always matched (Fig.4m). The second-by-second analy-
sis revealed amplitude variations across time and individuals, while
the oscillatory and induced motor frequencies were always matched
(Fig.4n). Comparisonbetween time and frequency domains confirmed
thatamplitude variability contributed to theimprecise cerebellar cod-
ing of rhythmic movements, while frequency information remained
numerically precise (Fig. 40).

Next, we investigated the laterality of DCN-encoded motor
rhythms. Using video recordings of the mouse limbs, we observed
ipsilateral limb movements induced by rhythmic optogenetic stimu-
lation (Supplementary Fig. 14 and Supplementary Video 4). These
results suggest the presence of laterality in the frequency coding of
limb movements.

To further confirm the specificity of DCN-mediated motion gen-
eration, we virally transfected hSyn-ChR2-EYFP into the interposed
nucleus of the DCN in wild-type (WT) mice (Supplementary Fig. 15).
Optogenetic activation of these transfected DCN neurons success-
fully generated rhythmic motions correspondingto each stimulation
frequency. We also investigated the role of motor amplitude tuning
by rhythmically stimulating the DCN with varying light intensities
(Supplementary Fig.16). Consistent with cerebellar recordings during
voluntary movements, which showed significant amplitude tuning
properties (Fig.2d and Supplementary Fig. 4d), increased light inten-
sity produced stronger rhythmic motions (Supplementary Fig.16a-e).
However, analyses onasecond-by-second basis and across entire peri-
ods revealed substantial variations (Supplementary Fig. 16f,g), indi-
cating less precise amplitude coding. The correlation slopes between
motion amplitude and cerebellar activity varied among individual
mice, suppressing the overall cross-individual correlation (Supplemen-
tary Fig. 16h,i) and failing to provide the cross-individual uniformity

Fig. 3 | Neuronal coding for rhythmic motions. a, A scheme of simultaneous
recordings of SU neuronal activities, DCN LFPs and motion kinematics. b, A
representative plot of the optetrode trajectory labelled with Dil (a representative
image of one mouse; eight mice were recruited for analysis with matched
cannula trajectory; Methods). ¢, The SU-firing rates (grey circles) and burst
rates (orange circles) in DCN versus motion frequencies (n = 222 units from 8
mice).d, A scheme of the vector strength spectrum analysis. e, Vector strengths
often SUs. f, Frequency convergence of the vector strength of arepresentative
trial during 16 Hz vibration. The vector strength spectrum peaks converged

to the motion frequency throughout the random selection of included units.
Intensity is in arbitrary units of vector strength (no unit), LFPs or motions (mV).
Theblue spectrum represents the mean vector strength of included units, the
black spectrum represents the DCN LFP and the purple spectrum represents the
motion. g, Frequency convergence of motions, LFPs and vector strength data
superimposed in all trials of all mice. The top two subplots show the frequency
spectrum of motion (top) and cerebellar LFP (middle). The light lines represent
single trials and the heavy lines represent the averages of all trials. All peaks with
sufficient prominence (Methods) detected in the vector strength spectrums
throughout the expansion of the unit population (bottom). The colour gradient
from green to blue reflects increasing units to calculate the vector strength
spectrum. The colour depthindicates the level of prominence (n =138 units

from 8 mice). Units with aminimum spike number <10 were excluded to avoid
unreliable computation of vector strength). h,i, Quantitative analysis of vector
strength spectrums: the peak frequency differences to motions (h) from vector
strength spectrum (left four, green to blue) or from DCN LFPs (rightmost, grey)
and the SNR (i) (Friedman statistic of 213.3, P < 0.0001 (two sided)), indicating
peak prominence of corresponding vector strength spectrums (n =138 units
from 8 mice).j—n, The tuning frequencies of neuronal firing probabilities via
autocorrelation spectrum (j) with a representative trial (k), group analysis (I) and
quantification (A frequency to motion (m) and SNR (n), n = 138 units from 8 mice;
Friedman statistic 0f 292.9, P < 0.0001 (two sided)). 0, Ascheme of the phasic
tuning of SU-firing probabilities to the instantaneous phases of motion.

p.q, Representative polar plots for original (p) and shuffled (q) data. DCN
neurons had a greater phasic bias to the phase of motion, quantified by the
polarity index. r,s, Group analysis of cumulative probabilities (r) and values

(s) of polarity indexes. DCN neurons revealed stronger phasic tuning to 16 Hz
compensatory motion at the populational level (n =138 units from 8 mice,
Wilcoxon matched-pairs signed-rank test; W=-6,691, P< 0.0001, two sided).
See Methods for detailed definitions of burst detection, vector strength and
peak prominence. Data are presented as mean values + s.d. Units represent
biologically independent recordings from different neurons. ***P < 0.001.
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required for precise engineering as seen in frequency coding (Fig. 4
and Supplementary Fig. 15).

A strong phase relationship between DCN firings and cerebellar
LFPs indicated potential circuitry interactions between the cerebel-
lar cortex and DCN (Supplementary Fig. 17). We also explored the
role of axonal projections from PCs to DCN in this frequency-coding
process (Supplementary Fig. 18). Rhythmic stimulation of PC axonal
terminals generated rhythmic motions at the stimulating frequencies
with matched population-coding mechanism, phase population effect
and cerebellar oscillations across all tested mice (Supplementary
Figs.18-20).

We also performed computational modelling of noisy DCN neu-
rons with the baseline firing rates at 20-22 Hz. When receiving inhibi-
tory inputs of PCs at the frequency of 16 Hz, the populational tuning
frequency converged to 16 Hz, while the mean firing rates stayed the
same (Supplementary Fig. 21). This supports the experimental data,
indicating that DCN neurons can adapt their population tuning fre-
quencies by PCs to encode motor frequencies without substantial
changes of their intrinsic firing properties.

Taken together, frequencies encoded by populations of DCN
neurons can produce corresponding motor frequencies. The cerebellar
cortex regulates DCN frequency codes through PC-to-DCN modulation.
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Fig. 4| Cerebellar and motor responses to optogenetic DCN stimulation

at multiple frequencies. a, A schematic of the experimental set up and
representative histology of channelrhodopsin-2 (ChR2)-expressing DCN.

b, Representative traces showing SU-firing rates (top) and their modulation
during 16 Hz optogenetic stimulation of the DCN (bottom). ¢, Statistical analysis
of SU-firing rates across different phases of the 16 Hz stimulation cycle

(n =58 units from 6 trials in 2 mice, one-way ANOVA; F = 62.56, P< 0.0001).

d-g, Vector strength analysis, including a representative example (d), group
analysis (e), frequency differences between motion and vector strength
spectrum peaks (f) and SNR of the spectrum peaks (g) (n = 58 units from 6 trials
in2 mice, one-way ANOVA; F=208.2, P<0.0001). CB, cerebellar. h, A scatter

plot of the peak cerebellar LFP frequencies against combined vector strength
spectrum peaks under various stimulating frequencies. i,j, Representative time—
frequency plots (i) and spectral diagrams (j) of optogenetically driven cerebellar
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oscillations and corresponding motor activities. k-m, Peak PSD amplitudes

of cerebellar oscillations (Friedman statistic of 25.22, P= 0.0003 (two sided))
(k) and motions (Friedman statistic of 28.90, P < 0.0001 (two sided)) (I) across
various stimulating frequencies. Collective data from seven trials in three mice
showing the close correspondence between cerebellar oscillatory and motor
frequencies (m). n, Scatter plots of the amplitudes (left) and frequencies (right)
of cerebellar LFPs and motor activity, compiled from1s intervals across all
trials (2,520 points from 7 trials in 3 mice). 0, Statistical analysis of the Pearson
correlation with Fisher’s transformation between cerebellar LFPs and motor
activity in the time domain and the determination coefficient (R?) of the linear
regression presented inn (from 7 trials in 3 mice, Kruskal-Wallis test, Kruskal-
Wallis statistic of 63.12, P < 0.0001, two sided). Data are presented as mean
values + s.d. Units represent biologically independent recordings from different
neurons.*P<0.0land **P<0.001.
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Fig. 5| Non-rhythmic cerebellar oscillations and motor kinematics induced
by linear chirp vibrations. a, The experimental settings and platform vibrations
with constantly changing chirp waveform. b, A schematic representation of
vibration protocol and the time-frequency plot of the vibration signals.

¢, Representative traces for compensatory motions. d,e, Frequency domain
analysis: arepresentative time-frequency plot of cerebellar LFPs, motions and
accelerometer signals (ACC) (d) and linear regression analysis of second-by-
second amplitudes and frequencies between the cerebellar LFPs and motions (e)

Cerebellar frequency (Hz)

%

(2,400 points from 80 trials in 8 mice). f,g, Time domain analysis: trial-by-trial (f)
and group analysis (g) of cross-correlation for cerebellar oscillations between
compensatory motions and residual body movements (accelerometer; Friedman
statistic of 9.75, P= 0.0048 (two sided)). h, Statistical analysis of the correlation
between cerebellar oscillation and motion in both the time domain (Pearson
correlation with Fisher’s transformation) and the frequency domain (R?)
(n=8mice; Friedman statistic of 24, P < 0.0001 (two sided)). Data are presented
asmean values +s.d.*P< 0.05and **P < 0.001.

While optogenetic stimulation of the DCN supports the role of the
cerebellumintheamplitude coding of movements, it does so with less
precision and notable cross-individual variability.

Cerebellar dynamic frequencies encode non-rhythmic
movement

While previous results detailed the cerebellum’s encoding of rhythmic
movements, most everyday movements are non-rhythmic. Theoreti-
cally, any finite signal, whether rhythmic or not, can be fully repre-
sented and reconstructed in the frequency domain. Non-rhythmic
signals can be constructed using dynamically changing instanta-
neous phases/frequencies and amplitudes (via Hilbert transform)
or multiple sets of these components in linear combinations (via
Hilbert-Huang transform). Therefore, if the cerebellum can gen-
erate highly dynamic frequencies across time, it has the potential

to create non-rhythmic complex motor kinematics with the same
frequency-coding mechanism.

To explore this hypothesis, we introduced floor vibrations with a
linear chirp waveform to mice—a complex, non-rhythmic waveform
characterized by constantly changing frequencies in a designed lin-
ear trend (Fig. 5a-c and Supplementary Video 3). This waveform is a
strictly non-rhythmic patternin which the instantaneous frequencies
atany two moments are different. Using alinear chirp vibration from
4t025Hzin30 s, the mouse cerebellum generated dynamic cerebel-
lar oscillations and compensatory motions with matched frequency
dynamics of the designed protocol (Fig. 5d,e). These self-generated
cerebellar oscillations correlated strongly with compensatory
motions but showed minimal correlation with residual body move-
ments recorded by an accelerometer (Fig. 5f,g). Consistently, while
frequency-dependent amplitudes of both cerebellar oscillations
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and motions were significantly increased (Fig. 5d), the magnitudes of
increment remained poorly correlated on second-by-second analysis,
therefore prohibiting the precise amplitude coding of motor kinemat-
ics (Fig. 5h).

Next, we optogenetically illuminated the DCN with the same linear
chirp in Thy1:ChR2-EYFP mice. Cerebellar oscillations can be reliably
generated with precisely matched time-frequency dynamics. The mice
developed complex motor kinematics with the motor frequencies
that matched the cerebellar oscillatory frequencies at nearly every
time point (Fig. 6a-d and Supplementary Video 5). Linear chirp illu-
mination at DCN with virally transfected hSyn-ChR2-EYFP produced
asimilar effect (Supplementary Fig. 22). Analysis of DCN SU activities
during chirp stimulation revealed a unique neuronal-firing pattern
consistent with the prediction from stimulation dynamics (Fig. 6f-i
and Supplementary Fig.22). The ability of the neurons to follow these
complex temporal dynamics supports their role in forming rapidly
changing frequency dynamics. Consistently, the populational DCN
firing probabilities were faithfully tuned to Hilbert-based instanta-
neous phases/frequencies, cerebellar LFPs and motion kinematics
(Supplementary Fig.23).

Besides linear chirp, we further pushed the complexity of fre-
quency dynamics by optogenetically illuminating DCN with complex
chirp waveforms (Fig. 6j,k). Like the simpler linear chirps, complex
chirpillumination evoked corresponding dynamics of cerebellar oscil-
lations (Fig. 61-n) and neuronal firings (Fig. 60-q), thus generating
matched frequency dynamics of mouse motor kinematics. While we
achieved frequency precision for simple or complex motor kinemat-
ics, the motor amplitudes remained imprecisely correlated (Fig. 6¢,1).
Therefore, thisapproach has yet to generate functional or skilled move-
ments, which requires precise coding for both motor frequencies and
amplitudes across all time points.

Taken together, the cerebellum encodes complex frequency
dynamics that match motor kinematic frequencies in self-generated,
non-rhythmic movements. Optogenetic stimulation confirmed that the
cerebellum can causatively generate non-rhythmic motor kinematics
by dynamically encoding motor frequencies. With the preserved algo-
rithm and numerical precision of frequency coding across all tested
mice, we can use optogenetics to create complex motor kinematics
with designed motor frequencies. The cerebellar-encoded frequency
over time matches with the motor frequency dynamics,

Cerebellar (f, t) = Motor (f, o).

Cerebellar frequency coding predicts skilled tongue
movement

The vibration platform and force plate were designed to target global
body motions involving multijoint synchrony. We aimed to determine
whether the cerebellar frequency-coding algorithm could also predict
more localized, skilled movements. To explore this, we investigated
tongue movement during licking behaviours while simultaneously

recording electrophysiological data from the dentate nucleus of the
DCN” (Supplementary Fig. 24a-c). Consistently, the frequencies of den-
tate LFPs were highly correlated with the licking rates (Supplementary
Fig.24d),and theSU activities were tuned with the dentate LFPs at the
populational level (Supplementary Fig. 24e-h). Notably, recordings
from the interposed nucleus also provided precise frequency codes
(Supplementary Fig. 24i-0), suggesting that both the interposed and
dentate nuclei contribute to lick frequency coding.

Takentogether, the cerebellumencodes frequency dynamics for
complex motor kinematics, whichis evidentinglobal body movements
and skilled tongue movements.

The human cerebellum engages in rhythm control

of movement

Toexamine whether the human cerebellumalso engages in frequency
control of volitional movements, we analysed cerebellar electroen-
cephalogram (EEG) and corresponding surface EMG signals of healthy
subjects performing rhythmic tapping at 4, 5 and 6 Hz (Fig. 7a,b and
Supplementary Table 1). Mirroring our findings in mice, cerebellar
oscillations were detected during finger tapping, closely matching
the EMG signal frequencies in a second-by-second analysis across
individuals (Fig. 7c-f). The spatial map of frequency-dependent EEG
signalsrevealed greater cerebellar than occipital power at the tapping
frequencies (Supplementary Fig. 25), indicating that these activities
originated from the cerebellum rather than from volume conduction
artefacts in the sensorimotor cortices, which would have produced
greater occipital power.

To probe the causal role of frequency codingin the human cerebel-
lum, we employed transcranial alternating current stimulation (tACS)
to modulate cerebellar oscillations. Using strong currents to modify
thefrequency of cerebellar oscillations may be dangerous. Therefore,
we evaluated the frequency stability of motions by applying 4 Hz tACS
to healthy subjects during 4 Hz finger tapping (Fig. 7g-i and Supple-
mentary Table 1). Similar to the effects of bidirectional modulations
of tremor amplitudes by cerebellar tACS?, in-phase or anti-phase
stimulation may bidirectionally change the stability of motor rhythms.
We utilized a4 Hz click sound to aid subjects inadjusting their tapping
frequencies and recorded accelerometer-based kinematics during
both sound-on and sound-off periods. The amplitude-independent
kinematics were extracted to evaluate frequency stability (Methods).
During the sound-off periods, tACS was found to either increase or
decrease tapping frequency stability (Fig. 7j), demonstrating effec-
tive frequency modulation. During the sound-on period, the tapping
kinematics were tightly guided by the sound, therefore revealing a
better correlation to the 4 Hz waveforms without a difference to tACS
manipulation (Fig. 7k,I).

Taken together, the cerebellar circuit of the healthy subjects
also actively engages in frequency coding of volitional movements.
Manipulation of cerebellar oscillations could enhance or suppress the
frequency stability of motor rhythms.

Fig. 6 |Non-rhythmic cerebellar oscillations and motor kinematics induced
by optogenetic stimulation. a, Optogenetic DCN stimulation with linear chirp
waveform. b, Arepresentative time-frequency plot of stimulating signals,
cerebellar LFPs and motions. ¢, Frequency domain analysis, linear regression
analysis of second-by-second amplitudes and frequencies between the cerebellar
LFPs and motions (239 pointsin 8 mice). d, Time domain analysis. Trial-by-trial
(left) and group analysis (right) of cross-correlation for cerebellar LFPs between
motions (Friedman statistic of 12, P= 0.0011 (two sided)). e, Statistical analysis
of the correlation between cerebellar oscillations and motions in both the time
domain (Pearson correlation) and frequency domain (R?) (n = 8 mice; Friedman
statistic 0of 22.2, P< 0.0001 (two sided)). f, SU activities of DCN with linear
chirp-wave stimulation. g, Predicted chirp points of maximal firing probability
and their evolution across stimulation trials (defined by the number of peaks of
chirp waves). h, The activity evolution of a representative SU. i, A group analysis

of correlation coefficient of DCN firings and chirp waveforms (n =136 units
from 8 mice, Wilcoxon matched-pairs signed-rank test; W=-9,018, P< 0.0001,
two sided).j, Replication of the experiment with acomplex chirp waveform
stimulation. k, A representative time-frequency plots of the stimulation signal,
cerebellar LFPs and motions. I, Frequency domain analysis (710 pointsin 12
mice). m, Time domain analysis (Friedman statistic 0f18.17, P<0.0001
(two-sided)). n, Statistical analysis (Friedman statistic of 32.4, P< 0.0001
(two-sided)). o, Predicted chirp points of maximal firing probability and their
evolution across stimulation trials. p, The activity evolution of a representative
SU. q, Group analysis of correlation coefficient of DCN firing and chirp
waveforms (48 units in 12 mice; Wilcoxon matched-pairs signed-rank test;
W=-1,172,P<0.0001, two sided). Data are presented as mean values + s.d.
*P<0.05,**P<0.01and ***P < 0.001. CB, cerebellum.
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Discussion

Inthis study, we provided mouse evidence and supporting human evi-
dencethatthe cerebellumencodes motor frequencies for physiological
motor kinematics. The frequency is encoded by the integrative phasic
tuning of neuronal firing probabilities at the populational level. While
the motor amplitudes are highly variable and contribute to the variabil-
ity of cerebellar kinematic coding in the time domain, the cerebellum
encodes motor frequency with quantitative precision and generaliz-
ability across individuals without the need for additional calibration.
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This level of precision allows us to engineer frequency dynamics for
complex motor kinematicsin mice. Among many cerebellar functions,
cerebellar rhythm coding emerges as a numerically precise and gen-
eralizable algorithm, potentially serving asamathematical backbone
for future quantitative studies of neural dynamics. The key features of
frequency coding are summarized in Fig. 8.

There are limitations in this study. First, the study design did not
include topographical information about different muscle groups,
which have been described in the cerebellum®”. We applied a vibration
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Fig.7| Cerebellar oscillations and their frequency modulation during
volitional tapping of healthy subjects. a, Experimental settings of cerebellar
EEG and EMG. b-e, Representative traces (b), time-frequency plots (c) and
spectral diagrams of cerebellar EEG (d) and EMG (e).f, Linear regression analysis
of second-by-second amplitudes and frequencies of cerebellar oscillations
and EMG activities at the tapping frequencies (1,286 points, n = 10 subjects).

g, Cerebellar tACS and simultaneous recording of tapping kinematics. h, The
study protocol. tACS was set at the tapping frequency of 4 Hz and applied
during the middle 2 min of volitional tapping. i, Frequency stability calculated
from amplitude-independent kinematics (Methods).j, tACS modulation of the
frequency stability of motion kinematics without a sound guide. Bidirectional

modulation was observed (n = 6 subjects with 3 repeated experiments; 9 and

9 trials with increased and decreased of frequency stability, respectively).
Wilcoxon signed-rank test (two sided). Increased group: P= 0.0039 (baseline
versus on), 0.0547 (on versus off) and 0.6523 (baseline versus off); decreased
group: P=0.0039,0.0742 and 0.0078, respectively. k, tACS modulation of the
frequency stability of motion kinematics with a sound guide. No significant
modulation was observed. 1, Cross-correlation (xcorr) peaks between tapping
kinematics and tACS waveform. Values in the sound-on period were significantly
higher than the sound-off period (the same 18 trials in 6 subjects, Wilcoxon
signed-rank test; W=1,326, P< 0.0001, two sided). Data are presented as mean
values +s.e.m.**P<0.01and **P< 0.001.
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Fig. 8| Summary of cerebellar frequency coding for motor kinematics.
The cerebellum encodes dynamic motor frequencies for kinematics, with
supreme numerical precision and cross-individual consistency. The motor
frequencies are generated by integrating neuronal firing probabilities at the
populationallevel. The motor frequencies can be highly dynamic across time

to construct non-rhythmic movements. The causality of the frequency-coding
mechanism can be established by optogenetic manipulationin mice and current
stimulations in humans. The cerebellar frequency codes for motionin both mice
and humans are identical.

platform for physiological global movements with multiple muscle
groups activated at the same frequency. This approach enhanced the
frequency-related information against the background, but lost the
topographicalinformation of muscle groups. The skilled licking move-
mentsonly involved tongue muscles and minimized topographical con-
cerns. Future studies are required to demonstrate topography-based
frequency coding for detailed motor kinematics. Second, we presented
the human evidence that supports the causative roles of frequency
modulation of the cerebellumby tACS interventions. However, we did
not have the single-cell level of evidence to describe whether mouse
and human cerebellar oscillations are generated based on the same
mechanism of populational neuronal codes. Addressing this gap will
probably require intrasurgical recordings or other methods capable
of capturing detailed neuronal activity. There is also a limitation in
the tACS experiment. The frequency-dependent phase relationship
between cerebellar oscillations and stimulating currents remains
unknown. Since the stimulation frequency matches the cerebellar
LFP frequency, the stimulation artefacts prevented us from directly
measuring this relationship using EEG. The tACS experiment provided
evidence that cerebellar oscillations at the stimulation frequency can
modulate human volitional movements at the targeted frequency,
whichisour goalinthis experiment. Gathering further evidence would
require more sophisticated approachesinfuture studies by indirectly
monitoring the phase relationship between cerebellar oscillations and
the stimulation.

The cerebellum employs a simple yet mathematically precise
algorithmto manage the complexity and diversity of motor functions,

offering a potential biological strategy to address the known problem
of ‘combinatorial explosion’ associated with nearly infinite motor
patterns. This finding has severalimportant implications for bioengi-
neering. First, the frequencies of cerebellar signals are quantifiable and
canbe mathematically described, presenting an opportunity to create
programmable control systems for biological movements using brain—
computer interfaces (BCls). Second, this frequency coding is achieved
through population coding, which can be detected using techniques
suchasLFPor EEG. This opens the door to using less-invasive BCls, such
as epidural high-density arrays, for topography-specific frequency
detection. A major advantage of this approach is to avoid invasive
electrode arrays that penetrate the brain to record SU activity, which
can lead to long-term neuronal damage and signal loss due to gliosis.
Additionally, optogenetic manipulation of neuronal populations ena-
bles frequency-specific control of movement without the need for
single-neuron resolution. Currently, experimental BCls targeting the
primary motor cortex still require invasive SU recordings for precise
motor decoding, and the reliance on single-neuron microstimulation
limits the kinematic precision achievable with simulation-based motor
control. In contrast, cerebellar mechanisms may offer a less-invasive
alternative. Third, and arguably the most important engineering impli-
cation, is that cerebellar frequency codes exhibit consistency across
different individuals, both in mice and humans. This cross-individual
consistency simplifies BCI design compared with purely customized
BCls that rely on model-free deep learning, as seen in the primary
motor cortex. The consistency of these frequency codes in kinematic
control provides valuable domain knowledge, reducing the dataload
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and complexity needed for training BCls. Additionally, this domain
knowledge offers the potential to develop BClIs for patients already
with braininjuries, who are unable to provide the optimal training data
duringtheir healthy states. A potential application of cerebellar BClisin
patients with cerebellar ataxia. Cerebellar ataxia, with a core symptom
of involuntary arrhythmic movements, is due to various genetic and
non-genetic causes of cerebellar degeneration and PCloss. Currently,
most forms of cerebellar ataxia lack effective treatment. By elucidat-
ing the mechanism of frequency coding in the cerebellum, cerebellar
BClmay facilitate the populational DCN neurons or remaining PCs to
generate the necessary frequencies® at the appropriate time and in
the correct topographical location. Further investigation is required
to validate whether this approach canimprove ataxic symptoms.

The population-coding mechanism depends on an anatomical
feature of axonal convergence within the motor cascade. Ultimately,
the population-encoded frequencies must converge onto aselect few
spinal motor neurons responsible for executing motor commands.
Supporting this prediction, there are approximately 262,000 DCN
neuronsinmonkeys®, while there are only about 600 skeletal muscles
that can differentiate among various motor frequencies, resulting in
an approximate 500:1 ratio. Additionally, the convergence rate from
PCs to DCN neurons is roughly 40:1 (ref. 30). This suggests that the
cerebellar system exploits population convergence and redundancy
to compute motor frequencies efficiently.

While the cerebellum nicely encodes motor frequency, there
are frequency harmonics in neuronal and behavioural levels in both
mice and human experiments. The deviation of waveforms from a
pure sinusoidal shape is reflected in the presence of harmonics. Sev-
eral mechanisms within the optogenetic-to-motor axis are known
to generate these harmonics. First, the relationship between light
intensity and photocurrents is sigmoidal, and the positive feedback
mechanism in action potential generation is highly nonlinear. As a
result, even when optogenetic stimulationis sinusoidal (for example,
Fig. 6b k), the probability of neuronal activation via optogenetics
remains nonlinear, as demonstrated in Fig. 6h,p. The summation of
this neuronal activity across a population may produce non-sinusoidal
contributions to LFPs (Fig. 6b,k), which directly lead to harmonics from
the neuronal building blocks. Second, additional nonlinear transfor-
mations may occur between neuronal activation and motor outputs.
The cerebello-thalamo-cortical-spinal-muscular pathway introduces
multiple nonlinear events, including synaptic transmission and action
potential generation. This is illustrated in the human data (Fig. 7c),
where volitional rhythmic tapping, driven by rhythmic cerebellar
oscillations with minimal harmonics, results in brisk, non-sinusoidal
EMG activation with pronounced harmonics.

Constructing motor kinematics requires information on both
motor frequenciesand amplitudes. While the cerebellum can precisely
construct dynamic motor frequencies, the counterpart mechanism
for motor amplitude coding remains elusive and more complex. Our
current findings (Figs. 2 and 4-7) and previous studies'**" in both
mice and humans suggested that the cerebellum can also regulate
motor amplitudes. Yet variations inmotor amplitudes under consistent
levels of optogenetic stimulation or cerebellar oscillationsindicate the
presence of additional mechanisms beyond cerebellar oscillations and
population coding. Future research needs to elucidate the mechanisms
responsible for encoding instantaneous amplitudes, which are crucial
for constructing functional motor kinematics.

Thiswork did notinvestigate the neuronal activitiesin the inferior
olive, which is the primary source of climbing fibres that project to
the cerebellar cortex in a highly organized and modular pattern®-¢
and plays an essential role in timing, rhythm, amplitude control of
movement®"'?**2 and motor learning®**~>". While our work empha-
sizes the precise population-level frequency coding in the DCN and
the engineerable aspects of motor control, it is essential to acknowl-
edge the foundational studies and theories that have shaped our

understanding of olivocerebellar motor control. The cerebellar cortex
is organized into longitudinal strips®**, where PCs within each strip
receive climbing fibre inputs with similar receptive fields, forming
functional units known as microzones*’*’, These microzones are con-
nected to specific regions of the inferior olive and project to the same
cerebellar nuclei. This unique structural organization allows paral-
lel information processing and plays a critical role in sensorimotor
control®®***® and coordination of multijoint movements’*”., Stimu-
lation of different regions within the cerebellar nuclei, corresponding
to different microzones, has been shown to evoke multijoint muscle
movements across different limbs?”", Our findings align with this
foundational understanding by demonstrating that optogenetics
stimulation of the DCN can elicit rhythmic movements in the right
forelimb (Supplementary Fig.14 and Supplementary Video 4). Beyond
its structural connectivity, the cerebellum has been proposed as a
computationalmodel for supervised learning and pattern recognition,
utilizing climbing fibres to provide error signals that guide synaptic
plasticity at parallel fibre-PC synapses’ . This framework supports
the cerebellum’s role in motor control through internal models®*’>”
that enable learning, adaptation and error correction. While some
argue that cerebellar kinematic control is a secondary effect solely
derived from motor learning, our study provides direct evidence of
real-time kinematic control. Specifically, the optogenetically induced
movements evoked by complex chirps are precise from the very first
instance, with no time or consistent patterns available for the mice to
learn. The cerebellar mechanisms of time keeping, motor learning,
motor control and sensory feedback are not mutually exclusive but
rather operate collaboratively to shape precise motor kinematics. This
study leverages advances in population microelectrode recordings,
whichnotonly support previous findings on single-neuronal temporal
coding of movement, but also extend the evidence to unprecedented
precision and cross-individual uniformity through the mechanism of
population coding. While alternative theories attribute different roles
totheolivocerebellar systemin motor control, which donot depend on
subthreshold oscillations*>?***¢*77 our study focused on the down-
stream outcome of cerebellar computationsin final motor output. The
applicability of our findings under these alternative theories has not
been examined in this work. Future studies are required to understand
how the olivocerebellum interacts with the DCN populational codes
for motor frequency control.

Methods

Animals

All experimental procedures were conducted following the guide-
lines and approved by the Institutional Animal Care and Use Commit-
tee of National Taiwan University (protocol numbers B201900034,
B202000003 and B202100150). Mice were housed in the central and
satellite facilities of National Taiwan University with a reversed 12 h
light/12 h dark cycle and unrestricted access to water and food. Tem-
perature and humidity were controlled within 22 + 3 °C and 55 +10%,
respectively. All experimental mice were between 3 monthsand1year
of age. C57B6/JNarl were used as WT mice. For optogenetic stimula-
tioninthe DCN, we used ThyI-ChR2-EYFPmice (B6.Cg-Tg(Thyl-COP4/
EYFP)9Gfng/J, Jackson Laboratory, number 007615), which express
ChR2-EYFP in various brain regions including our target DCN. For
optogenetic stimulation in the PCs, we crossed Calbindin-Cre mice
(B6;129S-Calb1™m>!eotz¢/) Jackson Laboratory, number 028532) with
Ai32 mice (B6;129S-Gt(ROSA)26Sorm3ACACCOPFHISIRIEVIRHze /] Jackson Labo-
ratory, number 012569). The resulting calbindin x Ai32 mice express
channelrhodopsin-2 dominantly in PCs.

Motionrecordings in freely moving mice

Motion signals of mice were amplified and detected usinga15 x 22 cm
force-sensitive platform (Convuls-1, Columbus Instruments; or
custom’®), allowing the mice to move freely. The platform linearly
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converted the applied weight into voltage for recording, with a con-
version rate of 0.45 volts per Newton (or 141 millivolts per 32 grams
of mass per gravity), enabling the platform to sense subtle weight
changes caused by the mice’s motion. The data were then low-pass
filtered at 250 Hzand then digitized at 1,000 Hz using adata acquisition
(DAQ) device (Cerebus, BlackRock microsystem). Detailed information
regarding the systems and settings canbe foundin our previous paper®.

Optetrode implantation and electrophysiology recording
Optetrode™, acombination of tetrode and optical fibre, was applied to
record SU activity, deep LFPs and perform optogenetic manipulation
simultaneously. The construction of the optetrode involved threading
tungstentetrodes (California Fine Wire Company) and an optical fibre
(ThorLabs, FT200UMT) through a microdrive screw (Renishaw) in a
3D-printed tower to stabilize and secure them. Each individual tung-
stenwire of the tetrode was threaded through the channel holes of the
electrodeinterface board and anchored using gold pins. Additionally,
we utilized small screws (Antrin Miniature Specialties, 0.089 inchesin
diameter, 0.0625inchesinlength) as electrodes to record the LFPs of
brain surface of mice.

During the surgery, 3-month-old mice were fixed on the stere-
otaxic frame under anaesthesia withisoflurane. The optetrodes were
implanted at the DCN (anteroposterior (AP), —6.24 mm; mediolateral
(ML), £2.1 mm; dorsoventral (DV),-1.9 mm fromdura), and the screws
were implanted on bilateral cerebellum surface (AP, —6.24 mm; ML,
+2.1 mm). For hippocampal recordings, optetrodes were implanted at
AP -2.65 mm, ML -3.0 mmand DV -2.0 mm from the dura. To identify
the implanted trajectory of the optetrode, NeuroTrace Dil (Thermo
Fisher, N-22800), a tissue-labelling paste, was applied to coat the
surface of the optetrode. After the implantation, we applied dental
cements (Superbound, Sun Medical) on the skull to secure the elec-
trodesin place atthe end of the surgery.

Electrophysiology signals were sampled at a rate of 30,000 Hz
using a DAQdevice (Cerebus, BlackRock microsystem or Open Ephys)
for subsequent offline analysis, which will be described in detail in the
following sections.

Optogenetic stimulation in the cerebellum

We utilized a custom-written LabView code to trigger the output of a
diode laser (Cobolt, 473 nm) through a multifunction input/output
device (N1782258-01). This set up allowed us to precisely and linearly
tune the output power at a frequency of 2 MHz. The laser power was
adjustedindividually for each mouse and ranged from 0.5 mWto 5 mW,
to achieve observable rhythmic movement with a motion amplitude
of approximately 10 millivolts on the force plate (corresponding to a
conversionrate of 0.45 volts per Newton; see ‘Optetrode implantation
and electrophysiology recording’ section). To ensure accurate light
power levels, daily calibrations were performed using power meters
(Thorlabs) before the experiments.

Most experiments involved optogenetic stimulation in
Thyl-ChR2-EYFP mice. For enhanced specificity in DCN-dependent
frequency coding, we also conducted experimentsin WT mice injected
with AAV9-hSyn-ChR2-EYFP (Addgene). In these cases, we performed
unilateral injections into the DCN (AP, -6.24 mm; ML, 2.1 mm; DV,
-2.0 mm from dura; 1 pl). Optetrodes were thenimplantedin the target
areas. The behavioural experiments started 3 weeks after the surgery
for virus transfection.

Inthe experiments using multiple stimulating frequencies, trains
of bluelight (25% duty cycle) at 8,12,16,20,15 and 10 Hz were sequen-
tially given for 90 s, separated by 300 s light-off periods. In the chirp
stimulation experiment, linear chirp waves (30 s, from 4 Hz to 25 Hz)
and complex chirp waves (1-10 s: 4-14 Hz; 10-15s: 14-8 Hz; 15-25 s:
8-25Hz;25-305:25-20 Hz;30-355:20 Hz; 35-455:20-10 Hz; 45-50 s:
10 Hz; 50-60 s:10-4 Hz) were generated by the MATLAB function and
linearly transformed into laser power with the 30,000 Hz amplitude

updatingrate. In experiments of varying laser intensities, trains of blue
light (25% duty cycle) were delivered to the right DCN at a constant
frequency of 16 Hz, withamplitudesincrementally increased from 0.5,
1,2,4to 8 mW. Allmice that received optogenetic stimulation were not
exposed tothe vibration platform before the stimulation experiments.

Vibration platform

We applied a customized vibration platform with optical grating
to ensure precise control of vibration frequency and its sinusoidal
vibrating waveform up to 120 Hz at the amplitude of 3 mm horizontal
vibrations. Two cameras were set to capture the front view and top
view of the vibration platform. In the experiments using multiple
vibrated frequencies, the platformvibrated at 8,12,16,20,15and 10 Hz
sequentially, with a duration of 90 s in each frequency and separated
by 2 min of non-vibrating periods. In the chirp vibrated experiment,
10 chirp vibration periods (30 s, from 4 Hz to 25 Hz) were separated
by 30 s of non-vibrating periods, and we repeated the protocol for 10
times in each experimental section. In the dual-vibration frequencies
experiment, we employed 3 sections of sinusoidal vibration signals
atfrequencies of 13 Hz and 20 Hz, and a combined signal at 13 Hz and
20 Hz. The combined signal was generated by summing sinusoidal sig-
nalsat13 Hzand 20 Hz. Each vibrating section lasted for 90 s, followed
by a120 snon-vibrating interval. We used the Open Ephys acquisition
boardtorecord neural electrophysiology signals, mouse accelerating
signals and vibrated signals. Mouse accelerating and vibrated signals
were captured through a headstage containing an accelerometer and
anaccelerometer attached to the vibration platform, respectively. The
signals were recorded and digitized at the sampling rate of 30,000 Hz.
To obtain the compensated motion signals, we applied a band-pass
filter within the frequency range of 3-30 Hz to the vibrated signals and
the mouse accelerating signals. We subtracted the mouse accelerat-
ing signals from the vibrated signals, resulting in the compensated
motion signals.

Inthe vibration platform experiment, mice typically took 3-7 days
toadapt. Each day, the mice underwent five vibration sessions with set-
tingsidentical tothose usedin the actual experiments. Initially, owing
to the freely moving set up, untrained mice would grip the platform’s
edge firmly and remain stationary. During early trials, the mice often
slipped on the platform and quickly moved to the edge, where they
would hold on and lean against the wall. Mice were considered well
trained whenthey could move, explore and hop freely on the platform
without slipping or edge gripping. Experiments and electrophysiologi-
cal recordings were conducted only after the mice had achieved this
level of training.

SU spike sorting and burst detection

Spikes were sorted by either of two sorting tools, Offline Sorter (OFS)
software and Kilosort3 software”. Electrophysiology data acquired
through optetrode were high-pass filtered at 250 Hz, and the noise was
reduced through digital referencing. Offline Sorter focuses on those
with higher amplitude, and extracts them as spikes. Subsequently, it
performs K-means clustering to assign each extracted spike to specific
SUs. Kilosort3 models the electrophysiology data as asum of template
waveforms triggered on the spike times, enabling the identification
and resolution of overlapping spikes. The detection criteria of DCN
bursts followed previous studies”’®”’. The interspike interval within
a burst should be equal to or smaller than 15 ms. The minimal spike
countwithinaburstwas4.

Spectrum analysis of motion and LFP data

The LFP data underwent spectrum analysis following the procedures
consistent with our previous works™"”7%”°, In summary, we placed the
recording electrodes on bilateral cerebellar surface with the follow-
ing coordinates relative to bregma: AP, -6.24 mm; ML, +2.1 mm; DV
-0.1 mm (indentation without punch through dura). The reference
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and ground electrodes were fixed into the right and left nasal bone,
respectively. Signals from the two electrodes were subtracted from
each other to form a typical bilateral montage with emphasis on the
in-between signals in the motor cerebellum. The digitized data were
originally sampled at 30,000 Hz and downsampled to 1,000 Hz for
analysis withaband-pass filter set between 0.3 and 128 Hz. Frequency
domain analysis was performed using in-house MATLAB scripts, with
the following details. Welch’s method with a Hanning window (each
segment is 1s long and overlaps half of the samples) was utilized to
estimate power spectral density (PSD, pV> Hz ™ for LFP dataand mV?Hz™!
for motion data). For fixed frequency stimulation, each PSD data point
was calculated froma 20 s window with a1 s shift. For chirp-wave stimu-
lation, a1swindow without overlap was applied.

EMG implant and analysis

In a subset of mice, we also implanted annealed wires (A-M system,
793500) into quadricep muscles for EMG recording. The wires were
tunnelled within the subdermal space and connected into the connec-
tor of ahead-mounted connector. We followed the same DAQ settings
for cerebellar LFP recordings. The EMG signals were preprocessed with
atypical band-pass filter at 20-500 Hz for EMG.

Motion capture

To demonstrate the laterality of ipsilateral controlin limb movements,
each mouse was head fixed during optogenetic stimulation, and limb
movements were recorded with a high-speed camera at 120 frames
per second. Using DeepLabCut®’, a markerless pose estimation tool
based ondeep neural networks, we tracked the positions of both front
paws. For subsequent spectrum analysis, we focused on the x-axis posi-
tions, as the primary movements occurred along this horizontal axis.

Vector strength analysis

The analysis of SU spike timing modulation was carried out using
vector strength analysis. It was introduced by Goldberg and Brown in
1969 and has been widely utilized to quantify the phase locking and
synchronization of aspike train, indicating whether a SU fires at specific
phases of a particular modulation frequency®°*, The spike timings of
individual units were obtained using the methods discussed earlier,
and these spike times, represented as a vector (t), were converted into
phase angles (p) using the formula

p = 21,
where frepresents frequency. Phase angles were adjusted to range

from -1 to . The vector strength (v) is then calculated with the
equation below® as

>

1
v= >
n

n
2 e
j=1

where n is the count of spikes, p is the vector of phase angles, i is the
imaginary unitand eis Euler’snumber. Since a higher number of spikes
often leads to a smaller vector strength, we normalized the vector
strength to account for this bias®’. We first generated a distribution of
random vector strengths for n number of spikes by calculating vector
strength with n random phases in 20,000 iterations. The mean and
standard deviation of this distribution are then calculated, and the
normalized vector strengthis the original vector strength subtracting
the mean and dividing the standard deviation.

The above steps only result in the vector strength at a certain
frequency. To obtain a vector strength spectrumillustrating the fre-
quencies at which the spike train achieves phase locking, the afore-
mentioned steps were repeated for each frequency ranging from1Hz
to 50 Hz with a 0.01 Hz increase. The resulting spectrum was then
subjected to the removal of exponential decay and smoothed using a

Gaussian-weighted moving average. Prominent peaks with prominence
larger than 1% of the mean intensity in the smoothed spectrum were
subsequently identified. The prominence criteria prevent reporting
random fluctuations, and the definition of prominence is defined in
the MathWorks documentation page (https://www.mathworks.com/
help/signal/ref/findpeaks.html). By iterating the steps above ten times
withshuffled spike times and averaging them, we acquired the shuffled
vector strength that served as a control.

To assess the contribution of population coding, we summed the
normalized vector strength spectrafromindividual unitsinarandom
sequence one by one. This resulted in a cumulative spectrum and we
examined the SNR from the inclusion 0f 10%,20%, 40% and 80% of the
total units. The SNRis defined as

. 2
SNR = mean(signal)

s,d.(noise)2 ’

Therange of ‘noise’ pertains to abandwidth of 5 Hz characterized
by theleastintensity. To mitigate potential bias, thisiterative procedure
wasreplicated 100 times. All these procedures were executed using an
in-house MATLAB script.

Correlation spectrum (autocorrelogram)

We conducted an analysis of the firing modulation of SUs to assess their
periodic activity. The SU data was downsampled from 30,000 Hz to
250 Hz and subsequently binarized into an array containing either O
(indicating time without spike firing) or 1 (indicating time with spike
firing). This binary array underwent autocorrelation using amaximum
lag of 1s, resultinginanautocorrelation function. To determine the fir-
ingmodulation of the SU, we applied the fast Fourier transform (FFT)
tothe autocorrelation function with afrequency resolution of 0.1 Hz.
We extracted prominent frequency components by identifying peaks
inthe frequency spectrum of the firing modulation, witha prominence
exceeding1% of the mean intensity. Aswith our vector strength analysis,
our examination focused on the frequency range of 0-30 Hz, which cor-
responds to linear motor kinematic coding. We replicated the approach
of unit summation as the vector strength spectrum. The definition of
the SNR remained consistent. All the procedures detailed above were
implemented using anin-house MATLAB script.

Spike-phase analysis

To examine the phasic tuningrelationship between the SU-firing prob-
ability and the continuous data (cerebellar LFP and the motor kinemat-
ics), we coupled the SU spikes time with the instantaneous phase of
the continuous data. First, both the SU spikes time and the LFP were
downsampled from30,000 Hzto1,000 Hz to facilitate effective filter-
ing. Next, we applied a band-pass filter to the continuous data with a
range of £3 Hz around the frequency of interest (for example, 4, 8,12,
16,20,15and 10 Hz). Utilizing the Hilbert transform, we calculated the
instantaneous phase of the filtered dataand corrected it by /2. Extract-
ingthe phase correspondingto each SU spike time, we visualized these
extracted phases as polar histograms. Furthermore, we introduced
a control by shuffling the instantaneous phases and pairing these
randomized phases with each spike time, resulting in shuffled polar
histograms. To quantify the phasic bias, we computed the polarity
index®”. This index involves summing each phase as a unit vector and
then dividing by the total number of vectors. The polarity index ranges
between O (indicating a purely random distribution across phases) to1
(indicating acompletely biased distribution towards a specific phase).

Correlation analysis of cerebellar LFP data

To examine the relationship between cerebellar LFP and various sig-
nals (vibrated signals, accelerating signals, motion signals and chirp
stimulation signals of laser), we calculated their cross-correlation
using an in-house MATLAB script based on the xcorr() function.
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The cross-correlation was computed with a 1s window that shifted
along the data. As cross-correlation is a function of time shifts, we
extracted the maximal value from each calculation across the shift-
ingtime.

Two-dimensional correlation analysis of chirp stimulation
pattern

Anideal stimulation patterngenerated fromthe chirp wave mentioned
previously was obtained by aligning each stimulation point at 0 and
plottingall stimulation points from-50 ms to 200 ms. The evoked spike
times of DCN SUs were aligned and plotted in the same way, resulting
in two-dimensional (2D) binary matrices of the same dimension. The
2D correlation coefficient between the ideal stimulation pattern and
the experimental results was calculated, producing a single value
indicating the similarity between the patterns. Shuffled patterns were
generated by permutating the time points of DCN SU spikes. All the
steps mentioned above were achieved by in-house MATLAB script.

Computational simulation
The neuron model. We used the leaky integrate-and-fire model as
described previously***®. In the model, the membrane potential V of
aneuronisgiven by

dv

CE =-gL(V-V)—-8gsWV-Vs)+1,

where Cisthe membrane capacitance, g, isthe membrane leak conduct-

ance, V, isthe membrane resting potential, g, is the synaptic conduct-

ance, sis the synapticgating variable, V,is the synaptic reverse potential

and/is other input currents. We further simplified the model into the

following equivalent form by dividing both sides by C, which leads to
dv

1 .
P (e VD) +gs(V—=Vy)—i).

The conductance on the right-hand side of the equation is
absorbed into 1/C. As aresult, g is a unitless variable, and the input i
has the unit of voltage. In the model, we also added Gaussian noise as
the membrane current, which is given by /7oy, where y is a Gaussian
distributed noise with zero mean and the units.d.,and o describes the
magnitude of the noise. Adding the noise terminto the equation above
leadsto

dv

1 .
a = —?((V— VW) +gs(V—-Vy)—i+

X

N

The gating variable sis given by

ds s
& = _T_s +;6(t—l’k),

where 7, is the synaptic time constant and ¢, is the time of kth input
spike. The deltafunction 6(x)is~atx=0and O elsewhere. We modelled
the excitatory andinhibitory (GABAergic) synapses. The time constant
(7,) equals 2 ms for both types of synapses, and the reverse potential
(V) is 0 mV for the excitatory and —70 mV for the inhibitory synapses.

The network model. The network contains two neural populations,
PC and DCN, and each population contains 100 neurons. Each PC
neuron exhibits aspontaneous firing rate ataround 100 Hzdue to the
Gaussian noise input. A sinusoidal input i=A sin(2mft) withamplitude,
A=80mV,and modulatory frequency,f=16 Hz, isalso provided to the
PC neurons. The PC neurons project to the DCN neurons with
one-to-one connections via GABAeregic synapses (g; = 0.7). The DCN
neurons are known to exhibit spontaneous activity, whichis modelled
by applying a constant membrane current (i =20 pA) and a Poisson

spike train (100 Hz) through the excitatory synapse (g, = 0.3) to each
DCN neuron. These inputs elicit a spontaneous firing rate of about
20-22 Hzineach DCN neuron.

LFPs. The LFPs of DCN are derived by calculating the mean excitatory
postsynaptic current (EPSC) and meaninhibitory postsynaptic current
(IPSC) across all DCN neurons and then taking the average of the two
mean currents. The EPSC contributes to the negative component of the
LFP, while the IPSC contributes to the positive component of the LFPs®®,
We did not consider the distance factor of the neuronin relation toits
contribution to the LFPs because we only modelled 100 DCN neurons,
and notopographical correlation between these neurons was assumed.

The simulation protocol. We performed a 20,000 ms simulation
in each trial. The first 5,000 ms was the resting period in which no
sinusoidal input to the PC neurons was provided. PC neurons gener-
ally fired at around 100 Hz owing to the Gaussian noise input. After
resting, the trial entered a10,000 ms stimulation period in which the
sinusoidalinputto the PC neurons was turned on. After the stimulation
period, thesinusoidal input was removed, and the trial entered a 5,000
post-stimulation resting period. The spike times EPSC and IPSC of all
DCN neurons were recorded during the trial.

Data analysis. We calculated the power spectrum density of LFP and
analysed the vector strength of the spike trains of the DCN neurons
using methods similar to those described in Methods section of the
main text. The LFP spectrum was calculated using Welch’s method
with a Hanning window of 1s. The vector strength was calculated for
different numbers of included units (neurons) to reveal the effect of
population coding. The vector strength was normalized by subtracting
the mean and then divided by the standard deviation of the random
baseline data, which was calculated based on the vector strengths of
1,000 randomized spike trains.

Tissue clearing and histological validation

After completing the behavioural experiments, mice were perfused
transcardially with 4% paraformaldehyde. Their brains were retrieved
for further examination of electrode placement and fluorescent
expression. Coronal or sagittal sections of were cut with a thickness
of 500 pm using a vibratome, and underwent tissue clearing with
RapidClear (Bio-East Technology) for 1 week. The histology images
were acquired with a fluorescent confocal microscope (SP8, Leica).
We assessed both the electrode placement and the fluorescent expres-
sion pattern of ThyI-ChR2-EYFP and calbindin x Ai32. In cases where
improper electrode placement or insufficient fluorescent expression
was observed, the corresponding electrophysiology data from those
mice were excluded from further analysis.

Human subjects

Ten healthy subjects received cerebellar EEG recordings during voli-
tional tapping, and six healthy subjects received the tACS study. We
recruited these subjects from two institutions: the Neurological Insti-
tute at Columbia University Irving Medical Center, New York, USA,
and the Cerebellar Research Center at National Taiwan University
Hospital, Yun-Lin Branch, Yun-Lin, Taiwan. Before participatingin the
study, all subjects provided written consent. The research protocols
were approved by the institutional review boards at both Columbia
University and National Taiwan University Hospital. Further detailed
information about the demographic of the subjects can be found in
Supplementary Table1.

Cerebellar EEG recordings and analysis for healthy subjects
performing volitional tapping

The cerebellar EEG recordings were also performed with the same lead
settings as our previous works'*"¥, In healthy subjects performing
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volitional tapping, the EEG signals were sampled at 512 Hz with a
64-channel EEG machine (Quantum, Natus Medical). The signals also
received band-passed filter at ~0.3-128 Hz. Muscle activities were
recorded by surface EMG, also sampling at 512 Hz by the same EEG
machine and band-pass filtered between 20 and 128 Hz. Surface EMG
data were then enveloped based on the 20- ms of root mean-squared
value by an in-house MATLAB function. The preprocessed EEG and
enveloped EMG data then underwent the same spectrum analysis
described previously.

Accelerometer measurements and tACS

IntACS experiments, the acceleration of finger tapping and EEG were
recorded using the Brain Vision acceleration sensor MR (3D) and the
actiCHamp system (Brain Vision LLC). To perform tACS, we utilized a
Soterix Medical1 x 1tES mini-CT device to generate astimulated wave-
form, which was then delivered using two 5 x 5 cm SNAPpad sponges
(Soterix Medical) consisting of a pre-inserted carbon-rubber electrode
atanintensity of 2.5 mA. These sponge electrodes were firmly secured
in place using a head and arm SNAPstrap. The stimulation electrode
was targeted at 2 cm lateral to the inion, covering the right cerebel-
lar hemisphere, while the reference electrode was positioned on the
deltoid muscles of the right arm.

The experimentinvolved asound-guided, rhythmic tapping task
using the index finger. Baseline recording involved 2 min of tapping,
including 1 min of tapping with 4 Hz guided audio sound, and 1 min
of tapping without any audio. After a short rest interval, tACS was
delivered for 2 min during the tapping task at 4 Hz. The audio cue was
applied for 1 min in every tapping period and then turned off. After
stimulation and a rest interval, the tapping task was repeated and
recorded again for 2 min, including 1 min of tapping with guided audio
sound and 1 min without any audio.

To assess the phase stability betweenthe accelerometer-recorded
motionandtACS, we applied the phase-sensitive cross-correlation. We
transformed the motion while preservingits frequency dynamics and
eliminating amplitude fluctuations by extracting their Hilbert-based
instantaneous phases and replacing with the time-dependent phases of
aunitvector. The transformed motion was then cross-correlated with
the 4 Hzsine waves, to evaluate the rhythmicity between4 Hz tapping
and perfect 4 Hz signals. The maximal cross-correlation values were
calculated. To ensure fair comparisons among subjects, we normal-
ized the mean cross-correlation values (averages of cross-correlation
values across the entire experiment) to 1.

Statistics

Non-parametric analyses were conducted for datasets with sample
sizes below 35 or those not following a normal distribution. We applied
the Mann-Whitney Utest, Wilcoxon signed-rank test and Kruskal-Wal-
lis test for independent samples, paired groups and multiple groups,
respectively. For datasets withsample sizes exceeding 35 and meeting
the homogeneity test for normal distribution, Student’s t-test, paired
t-test and one-way analysis of variance (ANOVA) were employed for
independent samples, paired samples and multiple groups, respec-
tively. Raw data points areillustrated in the figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the main text or Supplementary Information.
Source data are provided with this paper.

Code availability
Programs for data analysis are available on Code Ocean at https://doi.
0rg/10.24433/C0.8551138.v2 (ref. 88). Further details are upon request.
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data and materials availability: All data are available in the main text or the supplementary materials. Programs for data analysis are deposited in Code Ocean
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repository:
https://doi.org/10.24433/C0.8551138.v2
Further details are upon request.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Gender information is collected by informed consent and self-reporting. The information is provided in Table S1.

Reporting on race, ethnicity, or  Race, ethnicity or social constructed is not grouped in this study.
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groupings

Population characteristics Age and gender are provided in Table S1. The subjects are healthy volunteers with inform consent to disclose this two
necessary characteristics. Details are described in the Method section.

Recruitment All subjects are healthy volunteers without known neurological disorders. No further exclusion criteria was applied to avoid
selection bias. Before participating in the study, all subjects provided written consent. Details are described in the Method
section.

Ethics oversight The research protocols were approved by the Institute Review Board at both Columbia University and National Taiwan

University Hospital.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Due to the quantitative and precise nature of the readout, the sample size is predetermined by the statistical power based on the non-
overlapping data points and a safe margin based on the successful rate of the surgical procedure. For paired experiments, the pre-estimated
sample size is 5, based on Wilcoxon Signed Rank Test. For multiple comparison, the miminal sample size is 7, based on Kruskal-Wallis test. For
paramateric data, the pre-estimated minimal sample size is 15 based on One-way ANOVA. For More than expected data are all included,
except those fulfilled the data exclusion criteria.

Data exclusions  The exclusion criteria is included in the "Tissue clearing and histological validation". Electrophysiological data were excluded in those mice
with improper cannula placement or inadequate fluorescent expression.

Replication Replication of experiments, if applied, are all described in the figure legend and show in the raw data spreadsheet.
Randomization  All experiments are self-controlled and randomization is not required.

Blinding The experimental procedure and results are generated by automatic computer programs. No experimenter manipulation is involved and the
results are essentially blinded to the experimenters.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Plants
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Involved in the study

Eukaryotic cell lines

n/a | Involved in the study

|Z |:| ChIP-seq
|Z |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Dual use research of concern

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

We applied the following mouse strains for the experiments:

C57B6/INarl were used as wild-type mice.

For DCN optogenetics: B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J, Jackson Laboratory, No. 007615

For optogenetic stimulation in the PCs, we crossed Calbindin-Cre mice (B6;129S-Calb1tm2.1(cre)Hze/J, Jackson Laboratory, No.
028532) with Ai32 mice (B6;1295-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J, Jackson Laboratory, No. 012569).

Full details are included in the "Animals" section of the method, including the Jackson category number of all transgenic strains.

No wild-animals were used in this study.

Animal of both sex were used in all experiments. There are total 109 mice used for the whole study, including 56 male and 53 female
mice. This study provided evidence of cross-indidivual uniformity, essentially meaning no sex differences in all tested profiles.

No field collected samples were used in the study.

All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of National Taiwan University (Protocol
numbers: B201900034, B202000003, B202100150).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks

Novel plant genotypes

Authentication

N/A

N/A

N/A
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